Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.208
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36231323

RESUMO

BACKGROUND: Recovery between efforts is critical to achieving optimal physical and sports performance. In this sense, many nutritional supplements that have been proven to improve recovery and physical and physiological performance are widely used. Supplements such as nitrates (NO3-), including organic foods such as beets, promote muscle recovery and relieve fatigue. This study aimed to comprehensively summarise the available literature on the effect of NO3- consumption on exercise-related fatigue and muscle damage. METHODS: A systematic search was carried out based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) using electronic databases (e.g., PubMed, Scopus, and Web of Science). From a total of 1634 studies identified, 15 studies were included in this review. RESULTS: Based on the review, NO3- intake provokes physiological and metabolic responses that could potentially boost exercise-related recovery. NO3- could improve recovery indicators related to strength, pain, inflammation, and muscle damage. CONCLUSIONS: Despite the relative proven effectiveness of NO3- on recovery after aerobic and anaerobic efforts, based on the heterogeneity of the procedures (e.g., dosage, chronic vs. acute intake, participants' characteristics, variables and outcomes), it could be premature to suggest its extended use in sports.


Assuntos
Exercício Físico , Fadiga Muscular , Nitratos , Desempenho Atlético , Suplementos Nutricionais , Exercício Físico/fisiologia , Humanos , Fadiga Muscular/efeitos dos fármacos , Nitratos/administração & dosagem , Nitratos/farmacologia
2.
Medicine (Baltimore) ; 101(2): e28578, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029233

RESUMO

BACKGROUND: Exercise intolerance was prevalent in people with chronic obstructive pulmonary disease (COPD) and had a detrimental effect on the quality of life. We aimed to evaluate the efficacy and safety of nitrate supplementation in exercise tolerance of people with COPD. METHODS: We searched medical databases including Cochrane Library, EMBASE, and PubMed from inception to October 2020 for randomized control trials in treating COPD with nitrate supplementation. RESULTS: Nine trials were identified. Compared with placebo, nitrate supplementation has no significant effect on the following variables: exercise endurance time (standard mean difference [SMD]: 0.06; 95% confidence interval [CI]: -0.39 to 0.52; P = .79), exercise capacity (SMD: 0.30; 95% CI: -0.21 to 0.80; P = .25), oxygen consumption (SMD: -0.04; 95% CI: -0.33 to 0.25; P = .80), resting systolic blood pressure (MD: -2.84; 95% CI: -8.46 to 2.78; P = .32), systolic blood pressure after exercise (MD: -4.66; 95% CI -15.66 to 6.34; P = .41), resting diastolic blood pressure (MD: 0.89; 95% CI: -4.41 to 6.19; P = .74), diastolic blood pressure after exercise (MD: -0.21; 95% CI: -5.51 to 5.10; P = .94), heart rate (MD: -2.52; 95% CI: -7.76 to 2.73; P = .35), and arterial oxygen saturation (MD: -0.44; 95% CI: -2.38 to 1.49; P = .65). No severe adverse effects from nitrate supplementation were reported in the included trails. CONCLUSION: Current evidence suggests that nitrate supplementation may be safe but ineffective for improving exercise tolerance in people with COPD.


Assuntos
Suplementos Nutricionais , Tolerância ao Exercício , Nitratos/administração & dosagem , Doença Pulmonar Obstrutiva Crônica , Humanos , Saturação de Oxigênio , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
3.
Nitric Oxide ; 121: 1-10, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032643

RESUMO

Dietary nitrate (NO3-) ingestion can be beneficial for health and exercise performance. Recently, based on animal and limited human studies, a skeletal muscle NO3- reservoir has been suggested to be important in whole body nitric oxide (NO) homeostasis. The purpose of this study was to determine the time course of changes in human skeletal muscle NO3- concentration ([NO3-]) following the ingestion of dietary NO3-. Sixteen participants were allocated to either an experimental group (NIT: n = 11) which consumed a bolus of ∼1300 mg (12.8 mmol) potassium nitrate (KNO3), or a placebo group (PLA: n = 5) which consumed a bolus of potassium chloride (KCl). Biological samples (muscle (vastus lateralis), blood, saliva and urine) were collected shortly before NIT or PLA ingestion and at intervals over the course of the subsequent 24 h. At baseline, no differences were observed for muscle [NO3-] and [NO2-] between NIT and PLA (P > 0.05). In PLA, there were no changes in muscle [NO3-] or [NO2-] over time. In NIT, muscle [NO3-] was significantly elevated above baseline (54 ± 29 nmol/g) at 0.5 h, reached a peak at 3 h (181 ± 128 nmol/g), and was not different to baseline from 9 h onwards (P > 0.05). Muscle [NO2-] did not change significantly over time. Following ingestion of a bolus of dietary NO3-, skeletal muscle [NO3-] increases rapidly, reaches a peak at ∼3 h and subsequently declines towards baseline values. Following dietary NO3- ingestion, human m. vastus lateralis [NO3-] expressed a slightly delayed pharmacokinetic profile compared to plasma [NO3-].


Assuntos
Músculo Esquelético/química , Nitratos/análise , Nitritos/análise , Adulto , Suplementos Nutricionais , Feminino , Humanos , Masculino , Nitratos/administração & dosagem , Fatores de Tempo , Adulto Jovem
4.
Nutrients ; 13(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835931

RESUMO

Dietary nitrate supplementation has shown promising ergogenic effects on endurance exercise. However, at present there is no systematic analysis evaluating the effects of acute or chronic nitrate supplementation on performance measures during high-intensity interval training (HIIT) and sprint interval training (SIT). The main aim of this systematic review and meta-analysis was to evaluate the evidence for supplementation of dietary beetroot-a common source of nitrate-to improve peak and mean power output during HIIT and SIT. A systematic literature search was carried out following PRISMA guidelines and the PICOS framework within the following databases: PubMed, ProQuest, ScienceDirect, and SPORTDiscus. Search terms used were: ((nitrate OR nitrite OR beetroot) AND (HIIT or high intensity or sprint interval or SIT) AND (performance)). A total of 17 studies were included and reviewed independently. Seven studies applied an acute supplementation strategy and ten studies applied chronic supplementation. The standardised mean difference for mean power output showed an overall trivial, non-significant effect in favour of placebo (Hedges' g = -0.05, 95% CI -0.32 to 0.21, Z = 0.39, p = 0.69). The standardised mean difference for peak power output showed a trivial, non-significant effect in favour of the beetroot juice intervention (Hedges' g = 0.08, 95% CI -0.14 to 0.30, Z = 0.72, p = 0.47). The present meta-analysis showed trivial statistical heterogeneity in power output, but the variation in the exercise protocols, nitrate dosage, type of beetroot products, supplementation strategy, and duration among studies restricted a firm conclusion of the effect of beetroot supplementation on HIIT performance. Our findings suggest that beetroot supplementation offers no significant improvement to peak or mean power output during HIIT or SIT. Future research could further examine the ergogenic potential by optimising the beetroot supplementation strategy in terms of dosage, timing, and type of beetroot product. The potential combined effect of other ingredients in the beetroot products should not be undermined. Finally, a chronic supplementation protocol with a higher beetroot dosage (>12.9 mmol/day for 6 days) is recommended for future HIIT and SIT study.


Assuntos
Desempenho Atlético/fisiologia , Beta vulgaris , Suplementos Nutricionais , Treinamento Intervalado de Alta Intensidade , Fenômenos Fisiológicos da Nutrição Esportiva/efeitos dos fármacos , Adolescente , Adulto , Ingestão de Alimentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nitratos/administração & dosagem , Substâncias para Melhoria do Desempenho/administração & dosagem , Adulto Jovem
5.
J Int Soc Sports Nutr ; 18(1): 66, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625064

RESUMO

BACKGROUND: Previous narrative reviews have concluded that dietary nitrate (NO3-) improves maximal neuromuscular power in humans. This conclusion, however, was based on a limited number of studies, and no attempt has been made to quantify the exact magnitude of this beneficial effect. Such information would help ensure adequate statistical power in future studies and could help place the effects of dietary NO3- on various aspects of exercise performance (i.e., endurance vs. strength vs. power) in better context. We therefore undertook a systematic review and individual participant data meta-analysis to quantify the effects of NO3- supplementation on human muscle power. METHODS: The literature was searched using a strategy developed by a health sciences librarian. Data sources included Medline Ovid, Embase, SPORTDiscus, Scopus, Clinicaltrials.gov , and Google Scholar. Studies were included if they used a randomized, double-blind, placebo-controlled, crossover experimental design to measure the effects of dietary NO3- on maximal power during exercise in the non-fatigued state and the within-subject correlation could be determined from data in the published manuscript or obtained from the authors. RESULTS: Nineteen studies of a total of 268 participants (218 men, 50 women) met the criteria for inclusion. The overall effect size (ES; Hedge's g) calculated using a fixed effects model was 0.42 (95% confidence interval (CI) 0.29, 0.56; p = 6.310 × 10- 11). There was limited heterogeneity between studies (i.e., I2 = 22.79%, H2 = 1.30, p = 0.3460). The ES estimated using a random effects model was therefore similar (i.e., 0.45, 95% CI 0.30, 0.61; p = 1.064 × 10- 9). Sub-group analyses revealed no significant differences due to subject age, sex, or test modality (i.e., small vs. large muscle mass exercise). However, the ES in studies using an acute dose (i.e., 0.54, 95% CI 0.37, 0.71; p = 6.774 × 10- 12) was greater (p = 0.0211) than in studies using a multiple dose regimen (i.e., 0.22, 95% CI 0.01, 0.43; p = 0.003630). CONCLUSIONS: Acute or chronic dietary NO3- intake significantly increases maximal muscle power in humans. The magnitude of this effect-on average, ~ 5%-is likely to be of considerable practical and clinical importance.


Assuntos
Desempenho Atlético/fisiologia , Suplementos Nutricionais , Força Muscular , Nitratos/administração & dosagem , Método Duplo-Cego , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581269

RESUMO

Management of salivary gland hypofunction caused by irradiation (IR) therapy for head and neck cancer remains lack of effective treatments. Salivary glands, especially the parotid gland, actively uptake dietary nitrate and secrete it into saliva. Here, we investigated the effect of dietary nitrate on the prevention and treatment of IR-induced parotid gland hypofunction in miniature pigs, and elucidated the underlying mechanism in human parotid gland cells. We found that nitrate administration prevented IR-induced parotid gland damage in a dose-dependent manner, by maintaining the function of irradiated parotid gland tissue. Nitrate could increase sialin expression, a nitrate transporter expressed in the parotid gland, making the nitrate-sialin feedback loop that facilitates nitrate influx into cells for maintaining cell proliferation and inhibiting apoptosis. Furthermore, nitrate enhanced cell proliferation via the epidermal growth factor receptor (EGFR)-protein kinase B (AKT)-mitogen-activated protein kinase (MAPK) signaling pathway in irradiated parotid gland tissue. Collectively, nitrate effectively prevented IR-induced xerostomia via the EGFR-AKT-MAPK signaling pathway. Dietary nitrate supplementation may provide a novel, safe, and effective way to resolve IR-induced xerostomia.


Head and neck cancers are commonly treated using radiotherapy, where a beam of high-energy radiation is targeted at the tumour. This often severely damages the surrounding salivary glands, leading to chronic dry mouth and impairing a patient's sense of taste, nutrient intake, speech and immune system. Despite this significant impact on quality of life, there is no effective treatment yet for this side effect. In the body, salivary glands are one of the primary users of a compound known as nitrate, which is commonly found in the diet. In the glands, it is ushered into cells thanks to a protein known as sialin. The nutrient supports the activity and maintenance of the glands, before it is released in the saliva. Feng, Wu et al. therefore decided to test whether nitrate could offer protection during neck and head radiotherapy. The experiments used miniature pigs, which have similar salivary glands to humans. The animals that received sodium nitrate before and after exposure to radiation preserved up to 85% of their saliva production. By comparison, without any additional nitrate, saliva production fell to 20% of pre-radiation levels. To understand how this protective effect emerged, Feng, Wu et al. added nitrate to cells from a human salivary gland known as the parotid. This led to the cells producing more sialin, creating a feedback loop which increases the amount of nitrate in the salivary glands. Further examination then showed that the compound promotes growth of cells and reduce their death. These findings therefore suggest that clinical studies may be worthwhile to test if nitrate could be used to prevent dry mouth in head and neck cancer patients who undergo radiotherapy.


Assuntos
Nitratos/metabolismo , Glândula Parótida/efeitos da radiação , Radioterapia/efeitos adversos , Porco Miniatura/fisiologia , Xerostomia/prevenção & controle , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Nitratos/administração & dosagem , Glândula Parótida/metabolismo , Glândula Parótida/fisiopatologia , Suínos , Xerostomia/etiologia
7.
Aging (Albany NY) ; 13(16): 20081-20093, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433133

RESUMO

BACKGROUND: The best treatment for coronary artery disease (CAD) in patients with type 2 diabetes (DM2) and chronic kidney disease is unknown. METHODS: This retrospective study included MASS registry patients with DM2 and multivessel CAD, stratified by kidney function. Primary endpoint was combined of mortality, myocardial infarction, or additional revascularization. RESULTS: Median follow-up was 9.5 years. Primary endpoint occurrences among strata 1 and 2 were 53.4% and 40.7%, respectively (P=.020). Mortality rates were 37.4% and 24.6% in strata 1 and 2, respectively (P<.001). We observed a lower rate of major adverse cardiovascular events (MACE) (P=.027 for stratum 1 and P<.001 for stratum 2) and additional revascularization (P=.001 for stratum 1 and P<.001 for stratum 2) for those in the surgical group. In a multivariate analysis, eGFR was an independent predictor of MACE (P=.034) and mortality (P=.020). CONCLUSIONS: Among subjects with DM2 and CAD the presence of lower eGFR rate was associated with higher rates of MACE and mortality, irrespective of treatment choice. CABG was associated with lower rates of MACE in both renal function strata. eGFR was an independent predictor of MACE and mortality in a 10-year follow-up.


Assuntos
Doença da Artéria Coronariana/tratamento farmacológico , Nefropatias Diabéticas/complicações , Idoso , Aspirina/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/mortalidade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Feminino , Seguimentos , Humanos , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Nitratos/administração & dosagem , Estudos Prospectivos , Estudos Retrospectivos
8.
Br J Anaesth ; 127(4): 547-555, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34399982

RESUMO

BACKGROUND: Nitric oxide (NO) is an important signalling molecule in the cardiovascular system with protective properties in ischaemia-reperfusion injury. Inorganic nitrate, an oxidation product of endogenous NO production and a constituent in our diet, can be recycled back to bioactive NO. We investigated if preoperative administration of inorganic nitrate could reduce troponin T release and other plasma markers of injury to the heart, liver, kidney, and brain in patients undergoing cardiac surgery. METHODS: This single-centre, randomised, double-blind, placebo-controlled trial included 82 patients undergoing coronary artery bypass surgery with cardiopulmonary bypass. Oral sodium nitrate (700 mg×2) or placebo (NaCl) were administered before surgery. Biomarkers of ischaemia-reperfusion injury and plasma nitrate and nitrite were collected before and up to 72 h after surgery. Troponin T release was our predefined primary endpoint and biomarkers of renal, liver, and brain injury were secondary endpoints. RESULTS: Plasma concentrations of nitrate and nitrite were elevated in nitrate-treated patients compared with placebo. The 72-h release of troponin T did not differ between groups. Other plasma biomarkers of organ injury were also similar between groups. Blood loss was not a predefined outcome parameter, but perioperative bleeding was 18% less in nitrate-treated patients compared with controls. CONCLUSION: Preoperative administration of inorganic nitrate did not influence troponin T release or other plasma biomarkers of organ injury in cardiac surgery. CLINICAL TRIAL REGISTRATION: NCT01348971.


Assuntos
Ponte Cardiopulmonar/métodos , Ponte de Artéria Coronária/métodos , Traumatismo por Reperfusão Miocárdica/terapia , Nitratos/farmacologia , Idoso , Biomarcadores/sangue , Perda Sanguínea Cirúrgica , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Nitratos/administração & dosagem , Óxido Nítrico/metabolismo , Cuidados Pré-Operatórios/métodos , Troponina T/sangue
9.
J Int Soc Sports Nutr ; 18(1): 55, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243756

RESUMO

BACKGROUND: Nitrate supplementation is thought to improve performance in endurance sports. OBJECTIVE: To meta-analyze studies evaluating the effect of nitrate supplementation on endurance sports performance among adults. DATA SOURCES: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Web of Science and CINAHL without language restrictions. METHODS: We included studies that: 1) compared nitrate supplementation with placebo; 2) enrolled adults engaging in an endurance-based activity; and 3) reported a performance measure or surrogate physiologic outcome. We evaluated risk of bias using the Cochrane Collaboration tool and pooled data with a random-effects model. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to evaluate confidence in estimates. RESULTS: We included 73 studies (n = 1061). Nitrate supplementation improved power output (MD 4.6 watts, P < 0.0001), time to exhaustion (MD 25.3 s, P < 0.00001), and distance travelled (MD 163.7 m, P = 0.03). We found no significant difference on perceived exertion, time trial performance and work done. Nitrate supplementation decreased VO2 (MD - 0.04 L/min, P < 0.00001) but had no significant effect on VO2max or blood lactate levels. CONCLUSION: The available evidence suggests that dietary nitrate supplementation benefits performance-related outcomes for endurance sports.


Assuntos
Desempenho Atlético/fisiologia , Suplementos Nutricionais , Nitratos/administração & dosagem , Resistência Física/fisiologia , Adulto , Atletas , Viés , Aptidão Cardiorrespiratória/fisiologia , Tolerância ao Exercício/fisiologia , Humanos , Ácido Láctico/sangue , Consumo de Oxigênio/fisiologia , Viés de Publicação , Comportamento Sedentário , Fatores de Tempo
10.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R162-R173, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161745

RESUMO

Peripheral artery disease (PAD) is characterized by the accumulation of atherosclerotic plaques in the lower extremity conduit arteries, which impairs blood flow and walking capacity. Dietary nitrate has been used to reduce blood pressure (BP) and improve walking capacity in PAD. However, a standardized dose for PAD has not been determined. Therefore, we sought to determine the effects of a body mass-normalized moderate dose of nitrate (0.11 mmol nitrate/kg) as beetroot juice on serum nitrate/nitrite, vascular function, walking capacity, and tissue oxygen utilization capacity in patients with PAD. A total of 11 patients with PAD received either nitrate supplement or placebo in a randomized crossover design. Total serum nitrate/nitrite, resting BP, brachial and popliteal artery endothelial function (flow-mediated dilation, FMD), arterial stiffness (pulse-wave velocity, PWV), augmentation index (AIx), maximal walking distance and time, claudication onset time, and skeletal muscle oxygen utilization were measured pre- and postnitrate and placebo intake. There were significant group × time interactions (P < 0.05) for serum nitrate/nitrite, FMD, BP, walking distance and time, and skeletal muscle oxygen utilization. The nitrate group showed significantly increased serum nitrate/nitrite (Δ1.32 µM), increased brachial and popliteal FMD (Δ1.3% and Δ1.7%, respectively), reduced peripheral and central systolic BP (Δ-4.7 mmHg and Δ-8.2 mmHg, respectively), increased maximal walking distance (Δ92.7 m) and time (Δ56.3 s), and reduced deoxygenated hemoglobin during walking. There were no changes in PWV, AIx, or claudication (P > 0.05). These results indicate that a body-mass normalized moderate dose of nitrate may be effective and safe for reducing BP, improving endothelial function, and improving walking capacity in patients with PAD.


Assuntos
Beta vulgaris , Endotélio Vascular/fisiopatologia , Tolerância ao Exercício , Sucos de Frutas e Vegetais , Claudicação Intermitente/dietoterapia , Nitratos/administração & dosagem , Doença Arterial Periférica/dietoterapia , Caminhada , Idoso , Pressão Sanguínea , Índice de Massa Corporal , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Claudicação Intermitente/diagnóstico , Claudicação Intermitente/fisiopatologia , Masculino , Pessoa de Meia-Idade , Nebraska , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento , Rigidez Vascular , Vasodilatação
11.
Nitric Oxide ; 115: 8-22, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119659

RESUMO

OBJECTIVES: Inorganic nitrate is one of the most effective compounds in beetroot for improving cardiovascular function due to its conversion to nitric oxide in the body. This review and meta-analysis aimed to investigate the role of beetroot inorganic nitrate supplementation on adults' cardiovascular risk factors. METHODS: We conducted a systematic literature review of articles published without time limitation until November 2020 in PubMed, Embase, ISI Web of Science, Scopus, Cochrane Library, and gray literature databases. We included the original randomized clinical trials (RCTs) in which the effect of beetroot inorganic nitrate supplementation on endothelial function, arterial stiffness, and blood pressure was studied. RESULTS: 43 studies were included for qualitative synthesis, out of which 27 were eligible for meta-analysis. Beetroot inorganic nitrate supplementation significantly decreased Arterial Stiffness (Pulse Wave Velocity (-0.27 m/s, p = 0.04)) and increased Endothelial function (Flow Mediated Dilation: 0.62%, p = 0.002) but did not change other parameters (p > 0.05). CONCLUSION: Beetroot inorganic nitrate supplementation might have a beneficial effect on cardiovascular risk factors. Further high-quality investigations will be needed to provide sufficient evidence.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Nitratos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Nitratos/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Rigidez Vascular/efeitos dos fármacos
12.
Nitric Oxide ; 113-114: 57-69, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091009

RESUMO

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Nitratos/farmacologia , Nitritos/farmacologia , Administração Oral , Angiotensina II/administração & dosagem , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/sangue , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/administração & dosagem , Nitritos/sangue , Estresse Oxidativo/efeitos dos fármacos
13.
Eur J Appl Physiol ; 121(9): 2585-2594, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097130

RESUMO

PURPOSE: To test the hypothesis that interval-training (IHT) would be impaired by hypoxia to a larger extent than repeated-sprint training (RSH) and that dietary nitrate (NO3-) would mitigate the detrimental effect of hypoxia to a larger extent during IHT than RSH. METHODS: Thirty endurance-trained male participants performed IHT (6 × 1 min at 90%∆ with 1 min active recovery) and RSH (2 sets of 6 × 10 s "all-out" efforts with 20 s active recovery) on a cycle ergometer, allocated in one of three groups: normobaric hypoxia (~ 13% FiO2) + NO3- - HNO, n = 10; normobaric hypoxia + placebo - HPL, n = 10; normoxia (20.9% FiO2) + placebo - CON, n = 10. Submaximal oxygen uptake ([Formula: see text]O2), time spent above 90% of maximal [Formula: see text]O2 (≥ 90 [Formula: see text]O2max) and heart rate (≥ 90 HRmax) were compared between IHT and RSH sessions and groups. Additionally, mean power output (MPO), decrement score and % of power associated with [Formula: see text]O2max (%p[Formula: see text]O2max) in RSH sessions were analyzed. RESULTS: [Formula: see text]O2 at sub-maximal intensities did not differ between training protocols and groups (~ 27 ml kg-1 min-1). ≥ 90 HRmax was significantly higher in IHT compared to RSH session (39 ± 8 vs. 30 ± 8%, p = 0.03) but only in HNO group. MPO (range 360-490 W) and decrement score (10-13%) were similar between groups although %p[Formula: see text]O2max was significantly higher (p = 0.04) in CON (166 ± 16 W) compared with both HPL (147 ± 15 W) and HNO (144 ± 10 W) groups. CONCLUSION: IHT responses were neither more impaired by hypoxia than RSH ones. Moreover, dietary NO3- supplementation impacted equally IHT and RSH training responses' differences between hypoxia and normoxia.


Assuntos
Suplementos Nutricionais , Treinamento Intervalado de Alta Intensidade , Hipóxia , Nitratos/administração & dosagem , Adulto , Desempenho Atlético/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia
14.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947005

RESUMO

Beneficial metabolic effects of inorganic nitrate (NO3-) and nitrite (NO2-) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO3- to NO2- and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO2- to NO following ingestion of NO3-. In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO3-/NO2- supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO2--to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO3- in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO3- therapy.


Assuntos
Ácido Ascórbico/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Nitratos/farmacocinética , Oxirredutases do Álcool/deficiência , Animais , Arginina/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Deficiência de Ácido Ascórbico/complicações , Deficiência de Ácido Ascórbico/tratamento farmacológico , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/complicações , Dieta , Suco Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Glucose/metabolismo , Cobaias , Homeostase , Humanos , Insulina/metabolismo , Camundongos , Modelos Animais , Nitratos/administração & dosagem , Nitratos/metabolismo , Nitratos/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitritos/metabolismo , Nitritos/farmacocinética , Necessidades Nutricionais , Oxirredução , Ratos , Especificidade da Espécie
15.
Nitric Oxide ; 113-114: 70-77, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051342

RESUMO

PURPOSE: The aim was to investigate the effect of dietary nitrate supplementation (in the form of beetroot juice, BRJ) for 20 days on salivary nitrite (a potential precursor of bioactive nitric oxide), exercise performance and high altitude (HA) acclimatisation in field conditions (hypobaric hypoxia). METHODS: This was a single-blinded randomised control study of 22 healthy adult participants (12 men, 10 women, mean age 28 ± 12 years) across a HA military expedition. Participants were randomised pre-ascent to receive two 70 ml dose per day of either BRJ (~12.5 mmol nitrate per day; n = 11) or non-nitrate calorie matched control (n = 11). Participants ingested supplement doses daily, beginning 3 days prior to departure and continued until the highest sleeping altitude (4800 m) reached on day 17 of the expedition. Data were collected at baseline (44 m altitude), at 2350 m (day 9), 3400 m (day 12) and 4800 m (day 17). RESULTS: BRJ enhanced the salivary levels of nitrite (p = 0.007). There was a significant decrease in peripheral oxygen saturation and there were increases in heart rate, diastolic blood pressure, and rating of perceived exertion with increasing altitude (p=<0.001). Harvard Step Test fitness scores significantly declined at 4800 m in the control group (p = 0.003) compared with baseline. In contrast, there was no decline in fitness scores at 4800 m compared with baseline (p = 0.26) in the BRJ group. Heart rate recovery speed following exercise at 4800 m was significantly prolonged in the control group (p=<0.01) but was unchanged in the BRJ group (p = 0.61). BRJ did not affect the burden of HA illness (p = 1.00). CONCLUSIONS: BRJ increases salivary nitrite levels and ameliorates the decline in fitness at altitude but does not affect the occurrence of HA illness.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Sucos de Frutas e Vegetais/análise , Hipóxia/sangue , Nitratos/sangue , Nitritos/sangue , Adulto , Altitude , Suplementos Nutricionais , Feminino , Humanos , Masculino , Militares , Nitratos/administração & dosagem , Nitratos/metabolismo
16.
Nitric Oxide ; 113-114: 13-22, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905826

RESUMO

BACKGROUND: Previous clinical studies have shown controversial results regarding the effect of inorganic nitrate supplementation on blood pressure (BP) in older individuals. We performed this systematic review and meta-analysis to assess the effect of inorganic nitrate on BP in older adults. METHODS: Eligible studies were searched in Cochrane Library, PubMed, Scopus, Web of Science, and Embase. Randomized controlled trials which evaluated the effect of inorganic nitrate consumption on BP in older adults were recruited. The random-effect model was used to calculate the pooled effect sizes. RESULTS: 22 studies were included in this meta-analysis. Overall, inorganic nitrate consumption significantly reduced systolic blood pressure (SBP) by -3.90 mmHg (95% confidence interval: -5.23 to -2.57; P < 0.001) and diastolic blood pressure (DBP) by -2.62 mmHg (95% confidence interval: -3.86 to -1.37; P < 0.005) comparing with the control group. Subgroup analysis showed that the BP was significantly reduced when participants' age≥65, BMI>30, or baseline BP in prehypertension stage. And both SBP and DBP decreased significantly after acute nitrate supplementation of a single dose (<1 day) or more than 1-week. However, participants with hypertension at baseline were not associated with significant changes in both SBP and DBP. Subgroup analysis of measurement methods showed that only the resting BP group showed a significant reduction in SBP and DBP, compared with the 24-h ambulatory BP monitoring (ABPM) group and daily home BP measurement group. CONCLUSION: These results demonstrate that consuming inorganic nitrate can significantly reduce SBP and DBP in older adults, especially in whose age ≥ 65, BMI>30, or baseline BP in prehypertension stage.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitratos/farmacologia , Idoso , Monitorização Ambulatorial da Pressão Arterial , Suplementos Nutricionais , Humanos , Nitratos/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Nitric Oxide ; 111-112: 37-44, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831566

RESUMO

Dietary nitrate (NO3-) supplementation via beetroot juice (BR) has been reported to lower oxygen cost (i.e., increased exercise efficiency) and speed up oxygen uptake (VO2) kinetics in untrained and moderately trained individuals, particularly during conditions of low oxygen availability (i.e., hypoxia). However, the effects of multiple-day, high dose (12.4 mmol NO3- per day) BR supplementation on exercise efficiency and VO2 kinetics during normoxia and hypoxia in well-trained individuals are not resolved. In a double-blinded, randomized crossover study, 12 well-trained cyclists (66.4 ± 5.3 ml min-1∙kg-1) completed three transitions from rest to moderate-intensity (~70% of gas exchange threshold) cycling in hypoxia and normoxia with supplementation of BR or nitrate-depleted BR as placebo. Continuous measures of VO2 and muscle (vastus lateralis) deoxygenation (ΔHHb, using near-infrared spectroscopy) were acquired during all transitions. Kinetics of VO2 and deoxygenation (ΔHHb) were modeled using mono-exponential functions. Our results showed that BR supplementation did not alter the primary time constant for VO2 or ΔHHb during the transition from rest to moderate-intensity cycling. While BR supplementation lowered the amplitude of the VO2 response (2.1%, p = 0.038), BR did not alter steady state VO2 derived from the fit (p = 0.258), raw VO2 data (p = 0.231), moderate intensity exercise efficiency (p = 0.333) nor steady state ΔHHb (p = 0.224). Altogether, these results demonstrate that multiple-day, high-dose BR supplementation does not alter exercise efficiency or oxygen uptake kinetics during normoxia and hypoxia in well-trained athletes.


Assuntos
Beta vulgaris/química , Ciclismo , Exercício Físico , Sucos de Frutas e Vegetais , Nitratos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Hipóxia/metabolismo , Cinética , Músculo Esquelético/metabolismo , Nitratos/administração & dosagem , Oxigênio/química , Oxigênio/metabolismo , Raízes de Plantas/química
18.
J Cardiovasc Pharmacol Ther ; 26(4): 303-309, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764198

RESUMO

BACKGROUND: Contrast-induced nephropathy (CIN), an acute kidney injury resulting from the administration of intravascular iodinated contrast media, is a significant cause of morbidity/mortality following coronary angiographic procedures in high-risk patients. Despite preventative measures intended to mitigate the risk of CIN, there remains a need for novel effective treatments. Evidence suggests that delivery of nitric oxide (NO) through chemical reduction of inorganic nitrate to NO may offer a novel therapeutic strategy to reduce CIN and thus preserve long term renal function. DESIGN: The NITRATE-CIN trial is a single-center, randomized, double-blind placebo-controlled trial, which plans to recruit 640 patients presenting with acute coronary syndromes (ACS) who are at risk of CIN. Patients will be randomized to either inorganic nitrate therapy (capsules containing 12 mmol KNO3) or placebo capsules containing potassium chloride (KCl) daily for 5 days. The primary endpoint is development of CIN using the Kidney Disease Improving Global Outcomes (KDIGO) criteria. A key secondary endpoint is renal function over a 3-month follow-up period. Additional secondary endpoints include serum renal biomarkers (e.g. neutrophil gelatinase-associated lipocalin) at 6 h, 48 h and 3 months following administration of contrast. Cost-effectiveness of inorganic nitrate therapy will also be evaluated. SUMMARY: This study is designed to investigate the hypothesis that inorganic nitrate treatment decreases the rate of CIN as part of semi-emergent coronary angiography for ACS. Inorganic nitrate is a simple and easy to administer intervention that may prove useful in prevention of CIN in at-risk patients undergoing coronary angiographic procedures.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Meios de Contraste/efeitos adversos , Nitratos/administração & dosagem , Compostos de Potássio/administração & dosagem , Síndrome Coronariana Aguda/diagnóstico por imagem , Angiografia Coronária/efeitos adversos , Angiografia Coronária/métodos , Método Duplo-Cego , Humanos , Testes de Função Renal , Lipocalina-2/sangue , Nitratos/efeitos adversos , Nitratos/economia , Compostos de Potássio/efeitos adversos , Compostos de Potássio/economia , Projetos de Pesquisa , Reino Unido
19.
J Nutr ; 151(5): 1222-1230, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33760920

RESUMO

BACKGROUND: Nitrate supplements can improve vascular and muscle function. Whether higher habitual dietary nitrate is associated with better muscle function remains underexplored. OBJECTIVE: The aim was to examine whether habitual dietary nitrate intake is associated with better muscle function in a prospective cohort of men and women, and whether the relation was dependent on levels of physical activity. METHODS: The sample (n = 3759) was drawn from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab) (56% female; mean ± SD baseline age: 48.6 ± 11.1 y). Habitual dietary intake was assessed over 12 y by obtaining an average [of at least 2 time points, e.g., baseline (2000/2001) and 2004/2005 and/or 2011/2012] from a food-frequency questionnaire. Nitrate intake was calculated from a validated nitrate database and other published literature. Muscle function was quantified by knee extension strength (KES) and the 8-ft-timed-up-and-go (8ft-TUG) test performed in 2011/2012. Physical activity was assessed by questionnaire. Generalized linear models and logistic regression were used to analyze the data. RESULTS: Median (IQR) total nitrate intake was 65 (52-83) mg/d, with ∼81% derived from vegetables. Individuals in the highest tertile of nitrate intake (median intake: 91 mg/d) had 2.6 kg stronger KES (11%) and 0.24 s faster 8ft-TUG (4%) compared with individuals in the lowest tertile of nitrate intake (median intake: 47 mg/d; both P < 0.05). Similarly, individuals in the highest tertile of nitrate intake had lower odds for weak KES (adjusted OR: 0.69; 95% CI: 0.47, 0.73) and slow 8ft-TUG (adjusted OR: 0.63; 95% CI: 0.50, 0.78) compared with those in the lowest tertile. Physical activity did not influence the relationship between nitrate intake and muscle function (KES; P-interaction = 0.86; 8ft-TUG; P-interaction = 0.99). CONCLUSIONS: Higher habitual dietary nitrate intake, predominantly from vegetables, could be an effective way to promote lower-limb muscle strength and physical function in men and women.


Assuntos
Força da Mão , Músculo Esquelético/efeitos dos fármacos , Nitratos/administração & dosagem , Adulto , Dieta , Suplementos Nutricionais , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Inquéritos e Questionários
20.
Nitric Oxide ; 109-110: 42-49, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713800

RESUMO

The roles of nitrate and nitrite ions as nitric oxide (NO) sources in mammals, complementing NOS enzymes, have recently been the focus of much research. We previously reported that rat skeletal muscle serves as a nitrate reservoir, with the amount of stored nitrate being highly dependent on dietary nitrate availability, as well as its synthesis by NOS1 enzymes and its subsequent utilization. We showed that at conditions of increased NO need, this nitrate reservoir is used in situ to generate nitrite and NO, at least in part via the nitrate reductase activity of xanthine oxidoreductase (XOR). We now further investigate the dynamics of nitrate/nitrite fluxes in rat skeletal muscle after first increasing nitrate levels in drinking water and then returning to the original intake level. Nitrate/nitrite levels were analyzed in liver, blood and several skeletal muscle samples, and expression of proteins involved in nitrate metabolism and transport were also measured. Increased nitrate supply elevated nitrate and nitrite levels in all measured tissues. Surprisingly, after high nitrate diet termination, levels of both ions in liver and all muscle samples first declined to lower levels than the original baseline. During the course of the overall experiment there was a gradual increase of XOR expression in muscle tissue, which likely led to enhanced nitrate to nitrite reduction. We also noted differences in basal levels of nitrate in the different types of muscles. These findings suggest complex control of muscle nitrate levels, perhaps with multiple processes to preserve its intracellular levels.


Assuntos
Músculo Esquelético/metabolismo , Nitratos/metabolismo , Administração Oral , Animais , Dieta , Feminino , Fígado/química , Masculino , Músculo Esquelético/química , Músculo Esquelético/enzimologia , Nitrato Redutase/metabolismo , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/sangue , Nitritos/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...